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Numerical comparison of two approaches for the study of phase transitions in small systems
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We compare two recently proposed methods for the characterization of phase transitions in small systems.
The validity and usefulness of these approaches are studied for the cases of theq54 andq55 Potts model,
i.e., systems where a thermodynamic limit and exact results exist. Guided by this analysis we then discuss the
helix-coil transition in polyalanine, an example of structural transitions in biological molecules.
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I. INTRODUCTION

The study of phase changes in macroscopic systems h
long tradition in statistical physics. Its basic assumption
that the dimensions of the macroscopic system are very l
when compared with those of the constituting elemen
phase transitions are well defined only for infinite system
However, there are many phenomena in finite systems
resemble phase transitions; see, for instance, Refs.@1–4#.
Because of their importance for the understanding of
physics of clusters of atoms@5# or the folding of proteins and
other biological molecules@6#, to name only a few examples
these ‘‘phase transitions’’ in small systems have recently
tracted renewed interest. The main question is how the
served effects in small systems can be related to true p
transitions in macroscopic~or infinite! systems. A few at-
tempts were recently made in this direction, either throu
studying for finite and small systems the topology of curv
tures of the entropy-density surfaces(e,n) @7# in the micro-
canonical ensemble, or by exploring the density of comp
zeros of their canonical partition functions@4,8#.

The latter approach is closer to the traditional view
phase transitions. For infinite systems the physical featu
of a phase transition can be obtained from the distribution
the complex zeros of partition functions of finite systems.
the number of complex zerosb j5b j (L) grows with system
size L they will ~for a system with no external field! pinch
the positive realb axis, and for largeL the corresponding
value is the inverse of the physical critical temperatureTc .
One example of the extension of these ideas to finite syst
is the classification scheme by Borrmannet al. @4# which
explores the linear behavior for the limiting density of zer
@9,10#. Another description was suggested by Janke
Kenna ~JK! who propose a scaling relation to identify th
order and strength of a transition from the behavior of sm
systems@8#.

In this paper we try to evaluate the usefulness and vali
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of these two approaches. For this purpose we apply them
systems where a thermodynamic limit exists. In order to
useful the two approaches should be able to identify the m
roscopic phase transition from investigations of small syst
sizes. Our test case is the two-dimensional~2D! Potts model
with q55 states where the order of the phase transition
difficult to distinguish and which is therefore a challengin
test for these approaches. Simulations of the Potts mo
with q54 states add data for the case of a second o
phase transition. Our numerical investigations complem
earlier work in Ref.@8# on theq510 Potts model, which has
a pronounced first order phase transition.

Guided by our results for the Potts model we finally co
sider the helix-coil transition in polyalanine. The purpose
this investigation is to test whether the two approaches al
a characterization of a structural transition in biological m
ecules.

II. PARTITION FUNCTION AND DENSITY
OF COMPLEX ZEROS

In the canonical ensemble a system is completely
scribed by its partition function

Z~b!5(
E

n~E!exp~2bE!. ~1!

Introducing variablesu5exp(2kb) with conveniently de-
fined constantk allows the partition function for discrete
energy models to be written as a polynomial:

Z~u!5(
E

n~E!uE. ~2!

The number of complex zerosuj @uj5exp(2kbj),j
51,2, . . .# of this polynomial will grow with system size. In
the case of a phase transition, we expect the zeros~or at least
the ones close to the real axis! to condense for large enoug
system sizeL on a single line

uj5uc1r j exp~ iw!. ~3!
©2002 The American Physical Society10-1
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ALVES, FERRITE, AND HANSMANN PHYSICAL REVIEW E65 036110
As the system sizeL increases, those zeros will move towa
the positive realu axis and the corresponding value for lar
L is the inverse of the physical critical temperatureTc . Cru-
cial information on phase transitions can be obtained fr
the way in which the first zero approaches the realb axis.
However, such an analysis depends on the extrapolation
ward an infinitely large system and does not allow charac
ization of the situation in small systems.

One possible extension of the above ideas to ‘‘phase t
sitions’’ in small systems is the classification scheme
Borrmannet al. @4#. The idea behind this scheme is to u
not only the first complex zerou1, but also higher zerosu2 ,
u3, and u4. Writing the complex zeros asuk5Re(uk)
1 i tk , wheretk stands for Im(uk), the assumed distribution
of zeros on a straight line allows the definition of two p
rametersau andgu :

au5
ln f~t3!2 ln f~t2!

ln t32 ln t2
, ~4!

where

f~tk!5
1

2 S 1

uuk2uk21u
1

1

uuk112uku
D ,

with k labeling the first zeros, and

gu5@Re~u2!2Re~u1!#/~t22t1!. ~5!

Note that our notation differs from that in Ref.@4# in that we
define the discrete line densityf as a function of the zerosu
instead of the temperatureb. Following the classification
scheme by Grossmann and Rosenhauer@9,10#, phase transi-
tions can now be classified according to the values of th
two parameters: forau<0 andgu50 one has a phase tran
sition of first order, it is of second order for 0,au,1 and
arbitrary gu , and for au.1 and arbitrarygu one has a
higher order transition. In addition to the above paramet
t1 also plays an important role: only fort1→0 does one
obtain in the thermodynamic limit a real temperature fo
phase transition.

Another extension of partition function zero analysis
small systems is the approach by Janke and Kenna@8#, which
uses the fact that the average cumulative density of zero@8#

GL~r j !5
2 j 21

2Ld
~6!

can be written in the thermodynamic limit and for a fir
order transition as

G`~r !5g`~0!r 1arw111•••. ~7!

Here, the slope at the origin is related to the latent h
De}g`(0). Equations~3! and ~7! imply that the distancer j
of a zero from its critical point can be written for larg
enough lattice sizes as Imuj (L) since Reuj (L);uc . Hence,
in this limit Eqs. ~6! and ~7! lead to the following scaling
relation for the cumulative density of zeros as an equatio
j andL,
03611
to-
r-

n-
y
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2 j 21

2Ld
5a1@ Im uj~L !#a21a3 . ~8!

A necessary condition for the existence of a phase transi
is thata3 is compatible with zero, else it would indicate th
the system is in a well-defined phase. The values of the c
stantsa1 and a2 then characterize the phase transition. F
instance, for first order transitions the constanta2 should
take valuesa2;1 for small r, and in this case the slope o
this equation is related to the latent heat through the rela
@8#

De5kuc2pa1 , ~9!

with uc5exp(2kbc). On the other hand, a value ofa2 larger
than 1 indicates a second order transition whose specific
exponent is given bya522a2.

The above approach was originally developed and tes
for systems with well-defined first order phase transitio
such as the 2D ten-state Potts and 3D three-state Potts m
The results obtained agree with previous work from nume
cal simulations and partition function zero analysis of s
tems up toL564 @11,12# (L536 for the 3D case@13#!.

The classification of phase transitions by Borrmannet al.
has been tested for finite Bose-Einstein condensates
harmonic trap and for small magnetic clusters and nuc
multifragmentation@4#.

In the following we will show that despite these succe
ful tests both approaches can lead to wrong conclusion
applied blindly. For this purpose we study systems wh
determination of the order of the phase transition is known
be computationally difficult. We will concentrate on the 2
Potts model withq54 ~second order transition! and q55
~weak first order transition! states since a series of exa
results@14# exists for both models. For instance, the critic
temperatures are known to bebc5 ln(11Aq) and the latent
heat is given byDe(q55)50.052 918 7. Finally, we re-
search whether the two approaches can be used to chara
ize structural transitions in biological molecules.

III. RESULTS FROM POTTS MODEL SIMULATIONS

We start by presenting our results for the two Potts m
els with q54 and q55 on small lattices. Our study wa
performed on lattice sizesL516, 32, 64, and 128 forq54
andL58, 12, 16, 20, 24, 32, 64, 96, and 128 forq55. For
these models and system sizes we have evaluated the
plex partition function zeros from heat-bath simulations w
large statistics at temperaturesb0 listed in Table I. For each
lattice size, our results rely on 16 bins of 500 000 measu
ments. ForL,96 each measurement was separated by
additional Monte Carlo sweep which was discarded;
larger sizes measurements were only taken every fifth sw

For lattice sizes up toL520, we could calculate all com
plex zeros from the polynomial form of the partition functio
using MATHEMATICA . For larger lattice sizes such a dire
evaluation is no longer possible with standard numerical
gorithms, even when double precision is used. Only by us
the scan method~see@15# and references therein! were we
0-2
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NUMERICAL COMPARISON OF TWO APPROACHES FOR . . . PHYSICAL REVIEW E 65 036110
able to obtain reliable estimates for the firstJ complex zeros.
Note thatJ is limited by the precision of our data: insuffi
cient statistics of our simulation will lead to the presence
so-called fake zeros@16#. For instance, for theq54 Potts
model we could get reliable estimates only for the first th
zeros~Table II! while for theq55 Potts model we were abl
to obtain estimates for the first four partition function zer
~presented in Table III!. The error bars were calculated fro
the fluctuation of the averages taken over each of those
bins.

A. The Borrmann et al. approach

From the listed zeros in Tables II and III we obtain o
first result: even for our smallest lattice size (L516 for q
54 andL58 for q55) the zeros stay on a straight line an
the real parts are approximately constants. This is a ne
sary condition for both the Borrmannet al. and the JK ap-
proaches. We first calculate for bothq54 and q55 Potts
models the parametersau and gu on which the Borrmann
et al. classification scheme relies. Their values are listed
Table IV for all lattice sizes, and also plotted in Fig. 1~a! for
the q54 Potts model and in Fig. 1~b! for the case ofq55.
For the q54 Potts model we were able to obtain reliab
estimates for only the first three zeros for each lattice s
However, in order to calculate the parameterau we need
four zeros. For this reason, we have included here the
reliable fourth zero, which is not listed in Table II. As
consequence, our results for theq54 Potts model are les
reliable than those for theq55 model where we also hav
acceptable estimates for the fourth zeros. Estimates and
dard deviations presented in Table IV were obtained
means of the bootstrap method@17# based on our statistics o

TABLE I. Heat-bath simulations atb0 for the four- and five-
state Potts model in two dimensions.

L b0(q54) b0(q55)

8 1.1283
12 1.1489
16 1.084 1.1580
20 1.1626
24 1.1655
32 1.090 1.16866
64 1.096 1.17240
96 1.17332
128 1.09755 1.17373
03611
f

e

16

s-

n

e.

ss

an-
y

16 independent bins for each lattice size. Details of t
method are presented in the Appendix.

For both models, the obtained values of the Borrma
et al. parametersau and gu show no size dependence, b
rather seems to fluctuate around some average value. Fo
caseq54, the values ofau andgu are compatible with the
well-known fact that this model has a second order ph
transition in the thermodynamic limit. However, our a
proach seems to fail for the caseq55 which has a weak firs
order phase transition and where we would expectau<0
andgu50. Our results rather indicate a second order tran
tion (0,au,1 andgu arbitrary!. However, theq55 Potts
model is well known to have a very large correlation leng
~of order 2000 lattice units@18#!, and hence its true behavio
may only be caught for very large lattice sizes. Figure 1~b!
does not give any indications that we are even close to lat
sizes where the approach by Borrmannet al. would lead to
the correct result since the values forau and gu show no
systematic size dependence for the lattice sizes that we
studied (L<128).

Our results indicate that an uncritical application of t
Borrmann et al. approach may lead to wrong conclusio
about the nature of the phase transition in a system. In
case of theq55 Potts model this approach fails to identi
the nature of the phase transition from the distribution
zeros on small lattices. This seems to limit the usefulnes
this method to systems where the order of the transition
clear.

B. The Janke-Kenna approach

A similar method to study phase transitions in small s
tems is the one proposed by Janke and Kenna@8#. In this
approach one has to calculate the average cumulative de
of zerosG(r ) from the zeros listed in Tables II and III. In
order to investigate the phase transitions in our two syste
one has to fit the cumulative densityG(r ) to

G~r !5a1r a21a3 . ~10!

The aim of this fit is to obtain an estimate fora3 sincea3
50 indicates the existence of a phase transition. Howeve
simple evaluation of this fit may be misleading if lattice siz
are too small. In this case it may be necessary to study
FSS dependence of these quantities, i.e., how their estim
are related to ones obtained for larger systems or even in
thermodynamic limit.

In the case of theq54 Potts model we have to rely onl
on the first three zeros for each lattice size, which is
small a number for a meaningful three-parameter fit. For t
TABLE II. Complex partition function zerosuj ( j 51, 2, and 3! for the four-state Potts model.

L Re(u1) Im(u1) Re(u2) Im(u2) Re(u3) Im(u3)

16 0.339010~28! 0.016483~33! 0.335906~66! 0.032757~84! 0.33423~40! 0.04589~23!

32 0.335633~37! 0.006419~20! 0.334563~48! 0.012875~52! 0.33430~18! 0.01787~22!

64 0.334196~10! 0.002482~19! 0.334034~47! 0.005050~31! 0.33359~17! 0.006824~77!

128 0.333674~10! 0.0009474~78! 0.333542~12! 0.001952~10! 0.33333~07! 0.002618~28!
0-3
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TABLE III. Complex partition function zerosuj ( j 51, 2, 3, and 4! for the five-state Potts model.

L Re(u1) Im(u1) Re(u2) Im(u2) Re(u3) Im(u3) Re(u4) Im(u4)

8 0.321522~26! 0.033184~19! 0.313723~58! 0.067481~33! 0.30728~22! 0.09619~18! 0.3013~11! 0.1223~11!

12 0.316268~26! 0.018168~14! 0.312678~29! 0.037897~29! 0.31030~15! 0.05411~13! 0.30850~87! 0.06935~54!

16 0.313834~25! 0.011808~10! 0.311797~34! 0.024957~25! 0.31040~13! 0.03614~11! 0.30859~82! 0.04550~54!

20 0.312511~15! 0.008441~14! 0.311073~14! 0.018037~18! 0.310277~77! 0.026062~97! 0.30994~57! 0.03288~29!

24 0.311688~20! 0.006394~11! 0.310639~20! 0.013791~20! 0.310037~80! 0.020166~78! 0.31008~32! 0.02560~27!

32 0.310760~18! 0.0041194~87! 0.310158~13! 0.008993~17! 0.309810~42! 0.013193~55! 0.30957~18! 0.01651~15!

64 0.3096252~58! 0.0014120~24! 0.3094365~61! 0.0031623~42! 0.309353~14! 0.004685~17! 0.309370~58! 0.005988~64!

96 0.3093404~43! 0.0007373~31! 0.3092477~54! 0.0016948~52! 0.3092213~93! 0.0025327~81! 0.309199~33! 0.003198~25!

128 0.3092206~71! 0.0004654~28! 0.3091614~67! 0.0010790~32! 0.309135~11! 0.0016104~54! 0.309161~27! 0.002079~13!
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reason, we have combined the zeros of two neighboring
tice sizes and our fit therefore relies on six zeros for e
pair. The estimates so obtained fora3(L) are listed in Table
V. For the case of theq55 Potts model we have four zero
for each lattice size, but we have also calculateda3(L) from
fits where the eight zeros of two neighboring lattice siz
were combined, which leads to a more robust estimate of
parameter. The sets ofa3(L) so obtained are listed in Tabl
VI. We note that for both models the values ofa3(L) are
compatible with zero for all lattice sizes, demonstrating t
the two Potts models indeed have a phase transition.

The next question is whether and for what sizes the ab
approach is able to identify the order of the transition. T
requires us to calculate an accurate estimate for the qua
a2 in Eq. ~10!. For this purpose, we seta3 in Eq. ~10! to zero
and replace that equation by the simpler two-parameter

G~r !5a1r a2 . ~11!

Extracting the parametersa1 anda2 from this fit requires an
extremely careful data analysis and error estimation. For
reason we have again used the bootstrap method for est
ing averages and standard errors. The values ofa1 and a2
obtained are presented for all lattice sizes and bothq54 and
q55 in Tables V and VI. In Table VI we list these param
eters as a function of the first four complex zeros.

TABLE IV. Bootstrap bias-corrected estimates and bia
corrected standard errors for the parametersau andgu for q54 and
q55.

q54 q55
L au gu au gu

8 0.402~55! 20.2267~20!

12 0.322~51! 20.1819~16!

16 0.65~12! 20.1897(43) 0.42~11! 20.1552~24!

20 0.479~84! 20.1503~19!

24 0.510~74! 20.1414~23!

32 0.38~13! 20.1650(84) 0.541~93! 20.1233~25!

64 0.44~16! 20.058~18! 0.433~65! 20.1074~15!

96 0.458~73! 20.0970~46!

128 0.36~18! 20.125~15! 0.329~40! 20.0990~58!
03611
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Let us first consider the caseq54. Figure 2 displays the
values fora2(L) as a function of lattice size. In this plot w
do not observe any dependency ofa2 on the system size an
the possibility of a first order transition (a251) is clearly
excluded. Hence, our analysis reproduces the well-kno
fact that theq54 Potts model has a second order pha
transition. However, with our estimate ofa2 from our largest
lattice size, we find as critical exponenta522a2
50.430~18!. This value is far from the thermodynamic lim
2/3 @19–21#. This discrepancy may be due to the depende
of a2(L) on the higher and less precise zeros in the fits. T
dependence is less pronounced if we merge the zeros o
lattice sizes. Evaluating the resulting cumulative dens
leads to a value ofa251.466(23) which corresponds toa
50.534(23). This value of the critical exponenta is closer
to, but still far from, the theoretical value. It follows that o

FIG. 1. au(L) and gu(L) estimates forq54 Potts model data
~a! and forq55 Potts model data~b!.

-
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the simulated lattice sizes the JK scaling relations do allo
qualitative characterization of the transition in theq54 Potts
model, but do not allow one to obtain quantitative resu
such as the numerical values of critical exponents. This li
tation is a somewhat surprising result since the density
the cumulative density of zeros seem to be free@8# from the
multiplicative logarithmic corrections to the leading powe
law finite-size behavior@21,22# which hamper the determi
nation of the critical exponentsa andn in other approaches

At first sight, the situation seems to be worse for theq
55 Potts model. Even if we discard the fourth zero, wh
has larger fluctuations, and repeat our analysis only for
more reliable first three, our data do not lead to the expec
result a2;1. This can also be seen from Fig. 2 where
plot for this model also the parametera2(L) as a function of
lattice sizeL. However, unlike in the Borrmannet al. analy-
sis of theq55 Potts model, our data show a clear tre
toward the expected value for a first order phase transi
(a2;1). Our data suggest that by an extrapolation tow
large ~ideally infinite! lattices the true value ofa2 can be
determined with the JK approach even for theq55 Potts
model. This is consistent with the fact that theq55 Potts
model has a very large correlation length~of order 2000
lattice units!, and hence its true behavior can be caught o
for very large lattice sizes. The log-log plot ofa2(L) in Fig.
3 indicates that one should use a polynomial fit for the
trapolation toward the thermodynamic limit:

a2~L !5a2~`!1bL2c. ~12!

In order to see how acceptable the expected limita251 is,
we replace the above equation by a two-parameter

TABLE V. Bootstrap bias-corrected estimates and bias-correc
standard errors for the JK parameters from the first three zero
q54.

L a1 a2 (L,L8) a3

16 1.26~03! 1.574~07! ~16, 32! 20.00008(93)
32 1.48~10! 1.579~16! ~32, 64! 20.00003(24)
64 1.83~19! 1.591~19! ~64, 128! 20.000006(59)
128 1.86~22! 1.570~18!
03611
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ln@a2(L)21#5ln b2c ln L ~i.e., we seta251). In this way,
we obtainb50.717~16! andc50.1765(69), with the good-
ness of fit @23# Q50.72 for four zeros and b
50.7910(88),c50.2050(40), with a smallerQ50.09 for
three zeros. The corresponding fit for the case of four zero
shown in Fig. 4 and demonstrates that our data are ind
compatible with the expected valuea2;1 for a first order
phase transition. However, we can still obtain acceptable
(Q.0.7) for the whole range of 0<a2<1.013~but note that
values ofa2,1 are difficult to interpret in the JK theory, an
rather indicate numerical instabilities! which shows the dif-
ficulty in determining the order of the phase transition for t
q55 Potts model. Only if we restrict our analysis to the fir
three zeros does the goodness of fit show a maximum
a2'1.

The JK approach allows us also to calculate the latent h
for the case of a first order phase transition by means of
~9!. However, that equation is valid only whena2(L)51. In
the case of theq55 Potts model we havea2(L).1 for all
lattice sizes. Hence, we cannot use Eq.~9! to calculate the
latent heat from our values ofa1(L). Instead we have re
placed Eq.~11! by

GL~r !5A1~L !r , ~13!

i.e., a2(L) is substituted in Eq.~11! by a2(`), and have
studied the finite-size scaling of the new quantityA1(L)
which has the same limiting value asa1(L). Values forA1
are listed in Table VI. In order to calculate the latent heat
the q55 Potts model we evaluate firsta15A1(`) from the
finite-size-scaling fit

A1~L !5A1~`!1BL2C, ~14!

which leads with a goodness of fitQ50.68 to the values
a150.0284(18),B51.381(21), andC50.6187(80) when
the first four zeros are used for each lattice size. Restric
the analysis toA1(L) calculated only from the first three
zeros at each lattice size leads toa150.030 85(78)~with a
goodness of fitQ50.75). Applying Eq.~9! we therefore find
as latent heatDe50.0551(35)@De50.0599(15) in case of
three zeros# which is very close to the theoretical valu
De(q55)50.0529 . . . . This result is surprisingly good
when compared with other numerical estimates. For insta

d
or
meters
TABLE VI. Bootstrap bias-corrected estimates and bias-corrected standard errors for the JK para
from the first four zeros forq55.

L a1 a2 A1 a3 (L,L8) a3

8 1.305~28! 1.4981~78! 0.4119~18! 20.002(25) ~8, 12! 20.0003(60)
12 1.200~27! 1.4546~63! 0.3236~12! 20.001(11) ~12, 16! 20.0003(37)
16 1.170~40! 1.4370~81! 0.2759~14! 20.0001(55) ~16, 20! 20.0001(24)
20 1.161~36! 1.4290~67! 0.2451~10! 20.0001(35) ~20, 24! 20.0001(16)
24 1.087~30! 1.4096~60! 0.22134~77! 0.0001~23! ~24, 32! 0.00006~91!

32 1.045~30! 1.3949~57! 0.19069~62! 0.0001~13! ~32, 64! 0.00001~17!

64 0.863~41! 1.3475~82! 0.13353~76! 0.00002~31! ~64, 96! 0.000009~85!

96 0.734~31! 1.3175~62! 0.11049~42! 0.00001~14! ~96, 128! 0.000007~50!

128 0.666~29! 1.3002~66! 0.09687~35! 0.000006~74!
0-5
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a recent study using lattices of up toL54000 led to a latent
heat value ofDe50.054@24#.

Note that Eq.~14! corresponds to the finite-size-scalin
behavior of the specific heat if we identifyC5(12a)/n
since the latent heat scales withCvDTc(L), and at the criti-
cal temperature we haveDTc(L);L21/n and

Cv
max~L !5c11c2La/n. ~15!

This allows us to identify theoretically a second correcti
term in Eq.~14!:

A1~L !5A1~`!1B1L2(12a)/n1B2L21/n. ~16!

A check shows that our value ofC50.6187(80) is indeed
close to (12a)/n50.627, where the values of the so-call
pseudocritical exponentsa50.63(5) andn50.59(3) were
taken from finite estimates in Ref.@18#.

We also see from Eq.~16! that for a strong first orde
phase transition~as for instance in the earlier studiedq510
Potts model@8#! where we haven51/d anda51, we do not
have the first correction term in Eq.~16!. This explains why
very good estimates of the latent heat@De50.698~2!, which
one has to compare with the exact value for theq510 Potts
model, De(q510)50.696 049 4 @14## could be obtained
even from small lattice sizes for theq510 Potts model in
Ref. @8#. In fact, these estimates can easily be improved
including a second correction term, which goes asL22 for

FIG. 2. Parametera2(L) as a function of system sizeL for the
q54 Potts model and theq55 Potts model.

FIG. 3. Parametera2(L) as a function of system sizeL for the
q55 Potts model in a log-log plot.
03611
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this model toward the new valueDe50.696~92!. The large
error is due to the fact that only the largest sizesL532, 38,
48, and 64, for which the first correction term can be d
carded, were considered in our calculation. Here, our d
rely on the values quoted in Ref.@11#.

Our results indicate that the JK scaling relations are m
suitable than the Borrmannet al. approach for studying
phase transitions from the behavior of small systems. Un
in the Borrmannet al. approach the order of the phase tra
sition could be determined for both theq54 and theq55
Potts models. In the latter case~and for theq510 Potts
model which also has a first order phase transition! it was
possible to calculate the latent heat with good accura
However, the approach failed to give the correct value for
critical exponenta in the case of theq54 Potts model,
which has a second order transition.

IV. HELIX-COIL TRANSITION IN POLYALANINE

A common, ordered structure in proteins is thea helix
and it is conjectured that formation ofa helices is a key
factor in the early stages of protein folding@25#. It has long
been known thata helices undergo a sharp transition towa
a random-coil state when the temperature is increased.
characteristics of this so-called helix-coil transition ha
been studied extensively@26#. In previous work@27–29# evi-
dence was presented that polyalanine exhibits a phase
sition between the ordered helical state and the disorde
random-coil state when interactions between all atoms in
molecule are taken into account. Here, we reconsider p
alanine and investigate the helix-coil transition by means
the partition function analysis with the classification schem
of Borrmannet al. and of Janke and Kenna.

Our investigation of the helix-coil transition for polyala
nine is based on a detailed, all-atom representation of
homopolymer. Since one can avoid the complications
electrostatic and hydrogen-bond interactions of side cha
with the solvent for alanine~a nonpolar amino acid!, explicit
solvent molecules were neglected. The interaction betw
the atoms was described by a standard force fieldECEPP/2

@30# ~as implemented in theKONF90program@31#!. Chains of
up toN530 monomers were considered, and our results r
on multicanonical simulations@32# of Nsw Monte Carlo

FIG. 4. a2(L)21 @5a2(`)# as a function of system sizeL in a
log-log plot. The straight line through the data points is from our
0-6
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TABLE VII. Partition function zeros for polyalanine.

N Re(u1) Im(u1) Re(u2) Im(u2) Re(u3) Im(u3) Re(u4) Im(u4)

10 0.30530~12! 0.07720~14! 0.2823~13! 0.13820~61! 0.2459~72! 0.1851~63! 0.172~11! 0.2200~71!

15 0.356863~61! 0.053346~39! 0.34167~60! 0.10440~59! 0.3331~48! 0.1454~28! 0.3067~81! 0.1689~32!

20 0.374016~41! 0.042331~45! 0.36161~27! 0.08109~24! 0.3569~27! 0.1154~13! 0.3336~56! 0.1470~27!

30 0.378189~19! 0.027167~32! 0.37399~14! 0.05420~27! 0.3693~11! 0.0804~13! 0.35854~63! 0.1022~43!
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sweeps starting from a random initial conformation, i.
without introducing any bias. We choseNsw5400 000,
500 000, 1 000 000, and 3 000 000 sweeps forN510, 15, 20,
and 30, respectively. Measurements were taken every fo
Monte Carlo sweep. Additional 40 000 (N510) to 500 000
sweeps (N530) were needed for the weight factor calcu
tions by the iterative procedure described in Ref.@32#. In
contrast to our earlier calculation of complex zeros presen
in Ref. @28#, where we divided the energy range into inte
vals of length 0.5 kcal/mol in order to make Eq.~2! a poly-
nomial in the variableu5e2b/2, we avoided any approxima
tion scheme in the present work. This is because the ab
approximation works very well for the first zero, but not f
the next ones. Since we need high precision estimates fo
next zeros also we again applied the scan method.

In Table VII we present our first four partition functio
zeros for seven bins, although the fourth one is less relia
due to the presence of fake zeros. It is hardly possible
divide our production data into a larger number of bins d
to the limited statistics of our runs. Using the bootstr
method again we first calculated from the zeros for each
the parametersau andgu that characterize phase transitio
in small systems in the Borrmannet al.approach. As one can
see in Table VIII the values obtained for polyalanine a
characterized by large error bars and show no clear tr
with chain length. It seems that the median of theau values
is au50, which would indicate a first order transition. How
ever, our data have errors too large to draw such a conclu
on the nature of the helix-coil transition.

For this reason, we tried instead the JK scaling relatio
Table IX lists the parametera3(N) of Eq. ~8!. Here, the
average cumulative density of zeros is replaced by

GN~r j !5
2 j 21

2N
, ~17!

where we have translated the linear lengthL as N1/d @28#.
Therefore all finite-size-scaling relations can be written
terms of the number of monomersN.

TABLE VIII. Bootstrap bias-corrected estimates and bia
corrected standard errors for the parametersau andgu for the poly-
alanine model.

N au gu

10 20.36(17) 20.365(17)
15 0.41~19! 20.291(11)
20 0.06~14! 20.3229(78)
30 0.19~14! 20.1568(58)
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The valuesa3 are compatible with zero for chains of a
lengths, indicating that we have indeed a phase transition
order to evaluate the kind of transition we also calculate
parametersa1(N) and a2(N) which we also summarize in
Table IX. Similar to the case of theq55 Potts model, the
parametera2(N) decreases with increasing system size. T
log-log plot of this quantity as a function of chain length
Fig. 5 suggests again a scaling relation

a2~N!5a21bN2c. ~18!

A numerical fit of our data to this function leads to a value
a251.31(4) with Q50.95. Using a522a2 we find a
50.70(4) which is barely compatible with our previou
value ofa50.86(10) in Ref.@28#, obtained from the maxi-
mum of the specific heat. A fit of all four chain lengths ca
also not exclude a valuea251 since we can find acceptab
fits with Q.0.55 in the range 0.92,a2,1.44. However, a
close examination of Fig. 5 shows that theN530 data point
shows a considerable deviation from the trend suggeste
the smaller chain lengths. Since theN530 data are the leas
reliable, we also evaluated Eq.~18! omitting the N530
chain. This leads to a value ofa251.16(1) and a critical
exponenta50.84~1! which is now compatible with our pre
vious resulta50.86~10!.

Let us summarize our results for the helix-coil transiti
studies of polyalanine. The JK approach is able to reprod
for polyalanine results obtained in previous work@28#, but
does not lead here to an improvement over other finite-s
scaling techniques. In particular, the JK approach does
allow one to establish the order of the helix-coil transiti
from simulations of small chains. Our results for the para
etera2 seem to favor a second order transition, but this m
be due to large errors and is disputed by Ref.@29#, where
indications for a finite latent heat were found. In the pres
study we considered only a special kind of biological m
ecule, homopolymers of amino acids, where in principle
thermodynamic limit can be considered. This allows fini

TABLE IX. Bootstrap bias-corrected estimates and bia
corrected standard errors for the JK parameters for polyalanine

N a1 a2 a3

10 6.17~60! 1.862~46! 0.01~14!

15 4.37~19! 1.664~16! 0.014~69!

20 3.62~26! 1.558~24! 20.014(98)
30 3.54~31! 1.473~30! 20.007(61)

-
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size scaling, which is an essential tool for obtaining the c
rect results with the JK approach. However, in general s
finite-size scaling is not possible for biomolecules that hav
distinct size and composition. In these cases we have to
on the approach of Borrmannet al.However, in our example
of polyalanine, that approach led to even less conclusive
sults since the error bars were large. Hence, it seems
both approaches are limited in their usefulness for the st
of phase transitions in biomolecules.

V. CONCLUSION

We have evaluated two recently proposed schemes
characterizing phase transitions in small systems. Simula
the q54 andq55 Potts models, where for the thermod
namic limit we can compare our data with exact results,
found that both the Borrmannet al. and the JK approache
work well when the order of the phase transition is not
question@as in the case of theq54 Potts model~second
order! or the earlier studied first order transition in theq
510 Potts model#. The situation is different for cases such
the q55 Potts model where it is difficult to distinguish be
tween a weak first order and a strong second order transi
A careful application of the JK approach led to the corr
result of a weak first order transition for theq55 Potts
model while the Borrmannet al. approach did not allow a
correct identification of this transition with the lattice siz
studied by us. Our results from Potts model simulations
dicate that both approaches have to be applied with g
care if one wants to avoid wrong conclusions on the nat
of the phase transition in a system. This may limit their u
fulness to systems where the order of the transition is c
and to systems that are not too small. In particular, appl
tion of both approaches to helix-coil transitions in polya
nine demonstrates the difficulties appearing when they
applied to the study of phase transitions in biomolecules
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APPENDIX: BOOTSTRAP METHOD

The bootstrap is a simulation method based on a gi
data sample, to produce statistical inferences like the s
dard error and a bias-corrected estimator for the m
sample@17#. The bootstrap algorithm assumes that our d
can be obtained from an unknown probability distributionF
by random sampling,

F→X5~x1 ,x2 , . . . ,xn!. ~A1!

Here the pointsxi refer to ourn516 bins for each lattice size
in the Potts model or ton56 bins for polyalanine. For each
bin, the pointsxi contain the first four complex zeros.

Our statistics of interest are estimates for mean valueû
5u(X) for the parametersa and g in the Borrmannet al.
approach,

â5F~X!, ~A2!

ĝ5G~X!, ~A3!

and their respectives standard errorsE(â) andE(ĝ). HereF
andG stand for the application of the functions in Eqs.~4!
and ~5!.

The bootstrap algorithm continues by considering o
sample as an empirical distributionF̂, where each data poin
has the probability 1/n. The way the bootstrap method a
signs an accuracy to our parameters does not depend on
theoretical calculation but on random samples of sizen

drawn with replacement fromF̂, called a bootstrap sample

F̂→X* 5~x1* ,x2* , . . . ,xn* !, ~A4!

where each valuexi* equals any one of then valuesxi .
Therefore for each bootstrap sampleX* there is a boot-

strap replication ofû which we denote asû* . If we repeat
this process, the sample standard deviation can be obta
from B replications:

FIG. 6. Histogram of 400 bootstrap replications for the para
eterau from four-state Potts model data.
0-8
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ÊB5H (
b51

B

@ û* ~b!2 û* ~• !#2/~B21!J 1/2

, ~A5!

where the bootstrap meanû* (•)5(b51
B û* (b)/B. The limit

of ÊB asB goes to infinity gives the ideal bootstrap estima
of E( û).

The histogram in Fig. 6 represents ourû* distribution for
the parametera in our simulation of theq54 Potts model
for L5128 with B5400 replications. We obtain the boo
strap meanâ* 50.46(17). On the other hand, a calculatio
of simple averages from our 16 measurements leads tâ
50.41~18!.

The bootstrap estimate of bias based onB replications is
given by

B̂B5 û* ~• !2 û. ~A6!
y

.

J

03611
Therefore, the bias-corrected estimator isū5 û2B̂. It is also
convenient to evaluate the ratio of estimated bias to stand

deviationB̂400/ Ê400. A small number indicates an unneede
bias correction considering the standard error. The so-ca

root mean square error of the estimatorû for u can be de-
fined to take into account both bias and standard devia
@17#:

AEF„~ û2u!2
…5AEF~ û !21BF~ û,u!2.EF~ û !F11

1

2 S BF

EF
D G .

~A7!

If we take B̂5B̂400, our final result isā50.36(18) for
q54 andL5128. In the tables we quote our final estimat

ū5 û2B̂ and the above bias-corrected standard errors.
ys.
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